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Abstract: We previously proposed a Gabor optical coherence tomography angiography
(GOCTA) algorithm for spectral domain optical coherence tomography (SDOCT) to extract
microvascular signals from spectral fringes directly, with speed improvement of 4 to 20 times
over existing methods. In this manuscript, we explored the theoretical basis of GOCTA with
comparison of experimental data using solid and liquid displacement sample targets, demon-
strating that the majority of the GOCTA sensitivity advantage over speckle variance based
techniques was in the small displacement range (< 10 ∼ 20 µm) of the moving target (such as
red blood cells). We further normalized GOCTA signal by root-mean-square (RMS) of original
fringes, achieving a more uniform image quality, especially at edges of blood vessels where
slow flow could occur. Furthermore, by transecting the spectral fringes and using skipped
convolution, the data processing speed could be further improved. We quantified the trade-off
in signal-to-noise-ratio (SNR) and contrast-to-noise-ratio (CNR) under various sub-spectral
bands and found an optimized condition using 1/4 spectral band for minimal angiography image
quality degradation, yet achieving a further 26.7 and 34 times speed improvement on GPU and
CPU, respectively. Our optimized GOCTA algorithm has a speed advantage of over 140 times
compared to existing speckle variance OCT (SVOCT) method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) [1] technique, proposed in 1990’s, is an emerging
imaging modality for medical diagnostics and treatment monitoring. Due to the advantages
of non-invasiveness, high resolution and high imaging speed, OCT has been used for various
tissues, e.g. human retina, brain, cardiology, and dermatology. In addition to microstructural
imaging, functional OCTs (such as optical Doppler tomography (ODT) [2,3] or color Doppler
OCT (CDOCT) [4]) have been presented to measure the velocity of red blood cells in clinical
applications.

Besides Doppler based algorithms, a variety of phase, amplitude or complex signals based OCT
angiographic (OCTA) algorithms have also been proposed to contrast microvasculature, where
higher contrast can be achieved but the velocity information is ignored. In general, there are two
categories of OCTA algorithms according to the processing modes. The first is inter-line mode,
such as Doppler variance phase resolved (DVPR) [3,5], intensity-based modified Doppler variance
(IBDV) [6], and optical micro-angiography (OMAG) [7]. High A-scan density is usually needed
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by this mode since the dynamic signal is extracted from background by using a few consecutive
A-scans. The other mode is inter-frame, such as phase variance OCT (PVOCT) [8], speckle
variance OCT (SVOCT) [9–12], correlation mapping OCT (cmOCT) [13–15], split-spectrum
amplitude-decorrelation angiography (SSADA) [16], differential standard deviation of log-scale
intensity (DSDLI) [17], and ultrahigh sensitivity optical micro-angiography (UHS-OMAG)
[18–19]. For this mode, vascular information is extracted by comparing the two A-scans (from
the same position) acquired at different time. The sensitivity for detecting dynamic signals can be
improved compared to the first mode since the time interval between the 2 A-scans is increased.
One of the major research directions in the OCT field is parallel imaging or high A-scan

[20–22] speed and wide-field scanning [23], in which the acquired large quantity of data poses
a challenge for real-time data processing. To solve this problem, we previously proposed a
Gabor optical coherence tomographic angiography (GOCTA) algorithm [24] to improve the data
processing speed of calculating en face blood flow images. In this manuscript, we explored
the theoretical basis of GOCTA and identified normalization technique to obtain more uniform
GOCTA signal. Furthermore, the data processing speed was vastly improved by using a subset
of SDOCT fringe data and skipped convolution without significant degradation of image quality.

2. Theory and method

2.1. Theory and simulation

In SDOCT, the light back from sample and reference arms interferes and the fringe can be
expressed by [25]

I(λ) = S(λ)Rs cos
(
4π
λ

nz + φ0
)
, (1)

where λ is wavelength, S(λ) is power spectral density of light source, Rs is the backscattering
coefficient of sample, n and z are the refractive index and depth of sample, and φ0 is the initial
phase. When the scattering particle moves, the scattering coefficient or particle’s depth may
change, resulting in the variance of amplitude or phase signals versus time. Based on this fact, a
couple of B-scans can be acquired at the same position for OCTA calculation. To preserve the
scanning speed, only two B-scans are acquired for GOCTA. To calculate dynamic signals, the
first step is to calculate the differential fringe, expressed by

Id(λ) = I1(λ) − I2(λ). (2)

Because the sample information at different depths ismodulated by different frequency components
of the fringes and Gabor filter is a linear filter which can be used to extract the components within
a frequency range, the new differential fringes Id′(λ) from a specific depth-range can then be
obtained for en face vascular images calculation by convolving the Gabor filters (generated with
sample surface information) with the original differential fringes [24]. Note that the Gabor filters
are one dimensional and performed in depth direction. In our previous work, GOCTA signal is
calculated by [24]

GOCTA =

√√√
1
M

M∑
n=1
[Id′(λn) − Id′mean]

2. (3)

During OCT scanning, the backscattered light intensity by sample may vary due to speckle effect,
surface incline, refraction, and shadowing from vessels, which can modulate the background of
GOCTA image. Therefore, we divide the obtained GOCTA signal by root-mean-square (RMS) of
the original fringes to improve uniformity, and the optimized (GOCTA’) signals can be expressed
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by

GOCTA′ =
GOCTA√
1
M

M∑
n=1

I1(λn)
2

=

√√√√√√√√√√ M∑
n=1
[Id′(λn) − Id′mean]

2

M∑
n=1

I1(λn)
2

. (4)

We numerically simulated GOCTA’ signals at different flow speed, characterized by different
displacements between interference spectra measurements, and compared them to corresponding
SVOCT signals. The results are shown in Fig. 1, where we assumed a Fourier domain OCT
system with center wavelength of 1310 nm and a bandwidth of 100 nm with normalized optical
power spectral density shown in Fig. 1(a). A moving scattering particle produced two interference
spectra, marked red and blue as shown in Fig. 1(b), where the difference between them was
the basis of GOCTA signal. At small displacements between spectral measurements, there was
an oscillating pattern of the difference between the interference fringes, as shown in Fig. 1(c),
with diminishing amplitude which approached the limit of SVOCT as displacement increased.
Ideally, the improvement of GOCTA’ over SVOCT was primarily at small flow speed, where
there was small target displacements between interference spectra measurements, as shown in
Fig. 1(d) which was obtained by dividing the red curve (GOCTA data) by black curve (SVOCT
data) in Fig. 1(c) and expressed in dB. In addition, the simulation represented a single scatterer’s
response. Multiple scatterers within the focal volume, each with different speed (and therefore
different displacements), would result in an ensemble with reduced overall improvement. Hence,
we anticipated there could be a sensitivity advantage of GOCTA’ over SVOCT at slow flow speed,
or small displacement between interference spectra measurements.

Fig. 1. Simulation results. (a) Normalized optical power spectral density. (b) Two A-scans
of fringes with different displacements. (c) Plots of GOCTA’ (red) and SVOCT (black)
signals versus different displacements of moving particles. (d) Plot of the improved SNR
versus displacements for GOCTA’ compared to SVOCT.

We first verified the simulation result using a solid displacement target. A slightly tilted mirror
was used as the sample (illustrated in Fig. 2(a)). As the galvo swept the sample beam across the
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Fig. 2. Solid and liquid phantom verification experiments. (a) Tilted mirror target with
galvo in sample arm to generate reproducible displacements between A-scans. (b) Structural
image of all A-scans. (c) Interference fringes of two example A-scans with displacement of
6.9 µm. (d) Plots of the calculated GOCTA’ signals (red) and SVOCT signals (black) versus
displacements. (e) Improved SNR of GOCTA’ compared to SVOCT obtained by dividing
red curve by black curve in (d). (f) Illustration of experimental settings of flow phantom. (g)
M-mode (structural) image of A-scans. (h) Plots of the calculated GOCTA’ signals (red)
and SVOCT signals (black) versus displacements using the OCT signal marked by dashed
red line in (g). (i) Improved SNR achieved by GOCTA’ compared to SVOCT.

tilted mirror, different small axial displacements could be created (by comparing each A-scan
to the first A-scan) for the analysis of the performance of GOCTA’. The fringes were acquired
by a home-built SDOCT system which included a superluminescent diode (SLD) with a center
wavelength of 1310 nm and a bandwidth of 60 nm (giving an axial resolution of 12.6 µm in
air). In the sample arm, the diameter of collimated beam was 3.4mm, and the objective lens
had a focal length of 30mm, giving a lateral resolution of 8.6 µm. The spectrometer was based
on a grating (with a frequency of 892 lines/mm), achieving a spectral resolution of 0.365 nm.
An InGaAs camera (Goodrich SU-LDH2, Sensors Unlimited) with 1024 pixels was used to
detect optical interference fringes at its maximum A-scan rate of 91,912Hz. In this way, the
interference spectra with small displacements could be obtained and the corresponding structural
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image was shown in Fig. 2(b). By comparing each A-scan (In) to the first A-scan (I1), the plots
of GOCTA’ and corresponding SVOCT signals versus displacements were obtained and shown
in Fig. 2(d), demonstrating similarity to Fig. 1(c) as predicted by simulation. Figure 2(e) showed
the improvement (expressed in dB) achieved by GOCTA’ over SVOCT.
While the tilted mirror target experiment provided excellent agreement with simulation, we

would like to explore tissue mimicking 1% intralipid solution at room temperature as liquid
flow phantom for experimental validation of GOCTA’, with multiple scatterers inside the focal
volume. As shown in Fig. 2(f), a plastic tube with an inner diameter of 0.28 mm was positioned
at 60° Doppler angle, through which the intralipid solution was pumped with a mean velocity of
18.5 mm/s by a syringe pump (Harvard Apparatus, Holliston, MA). We operated the SDOCT
system in M-mode and the structural image was shown in Fig. 2(g). Since the velocity varied
along the depth direction, the intereference signal at the center of tube marked by the dashed
red line was obtained to calculate GOCTA’ and SVOCT signals, as shown in Fig. 2(h). Since
the intralipid particles had aggregate sizes smaller than the focal volume, multiple scatterers,
each with potentially different individual movement speed, produced an ensemble effect on the
GOCTA’ signal with reduced oscillating amplitude in Fig. 2(h). As shown in Fig. 2(i), there
was still up to 17 dB of improvement over SVOCT at slow flow speed, since GOCTA’ used
both amplitude and phase from interference fringes to extract dynamic information, while only
structural OCT signal amplitude was used in SVOCT. We noted the horizontal axes in Fig. 2(h)
and (i) represented only the bulk flow related displacement, which would be an underestimate
of intralipid particle movement which were subjected to other effects such as Brownian motion
and turbulence. For simplicity, we did not take their contribution as well as the ensemble effect
into consideration for our simulation. Nevertheless, the intralipid flow phantom experiment
demonstrated improvement of GOCTA’ over SVOCT based technique, which provided basis for
the subsequent human retinal imaging experiments.

2.2. Optimization of data processing speed

We previously used simple spherical approximation for the human retinal surface, where a
fixed radius of curvature determined from healthy population and 3 A-scans provided the input
parameters for the approximation [24]. For the optic nerve head region, and to a lesser extent, the
fovea, complex surface contours existed, which demanded refinement for the surface contour
extraction. Here we employed a sparse 9×9 matrix of A-scans, with limited computational
penalty (see Fig. 3(a)) for performing FFT and 2D cubic interpolation, to allow more precise
determination of the retinal surface. For more uniform regions, the matrix density can be reduced
further.

Since power spectral density of SLD was approximately a Gaussian function where the central
part of spectrum carries the majority of sample information, the spectral fringes obtained by
OCT detecting system could be truncated to decrease computation complexity without significant
degradation of image quality (Fig. 3(b)), achieving a higher data processing speed. Based on
the fact that all pixels in spectral fringes carried the information of moving scatterers, skipped
convolution could be performed to further decrease computational complexity. As shown in
Fig. 3(c), the Gabor filter kernel shifted along A-scan direction and did multiplication and
summation with the same number of pixels. After each round of calculation, the kernel went to
the next set of pixels without overlapping pixels for the next round of calculation. In this way,
each pixel was only used once for calculation, while each pixel was used Ng (size of Gabor filter
kernel) times for calculation in standard convolution. Therefore, computational complexity could
be significantly decreased with skipped convolution compared to standard convolution. This
effect was clearly tabulated in Table 1, where we analyzed the computational complexity in terms
of the number of multiplications and summations used in FFT or skipped convolution, for full
spectral band, 1/2, and 1/4 truncated spectral bands. Note the convolution kernel length (Ng) for
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Fig. 3. Sparse matrix surface estimation (a), sub-spectral band (b), and skipped convolution
for GOCTA’ (c).

GOCTA’ was kept at 16. If the spectral band could be truncated to 1/4 bandwidth, then only
approximately 5% of the multiplications and 2% of the summations needed to be computed,
providing dramatic speed improvement over FFT using the full spectrum. The trade-off in OCTA
image quality needed to be examined experimentally using human volunteers in retinal imaging,
which would be described in the next section.

Table 1. Comparison of computational complexity of FFT vs skipped convolution in each A-scan

# of operations Operation type Full spectral band 1/2 spectral band 1/4 spectral band

FFT
Multiplication 11264 5120 2304

Summation 22528 10240 4608

Skipped convolution
Multiplication 2048 1024 512

Summation 1920 960 480

3. Experimental results

3.1. OCT system

As reported in our previous paper [24], all in vivo experiments were performed on a commercial
SDOCT system (AngioVue, OptoVue Inc.). This system operated at a center wavelength of
840 nm with the axial resolution and lateral resolution of ∼5 µm and ∼15 µm, respectively. The
A-scan rate was 70,000 A-scans per second and each A-scan contained 2048 pixels. 304× 2×304
A-scans were acquired for each dataset covering 3×3 mm2 (9.9 µm of A-scan interval) and each
position was scanned twice for OCTA information extraction.
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3.2. Comparison of optimized GOCTA’ images with different spectral bands and
skipped convolution

To test the performance of the optimized GOCTA’, we scanned the optical nerve head region
(3×3 mm2) of a female healthy volunteer’s retina and calculated en face vascular images with
different spectral bands using both regular convolution and skipped convolution for comparison
(Fig. 4). Comparing Fig. 4(a)–(f), it could be seen that the image quality of GOCTA’ images
with different spectral bands and with skipped convolution was comparable.

Similar to our previous work [24], a mask obtained by thresholding the averaged image was
used to calculate SNRs and CNRs for quantitative comparison, as shown in Fig. 4(h) and Fig. 4(i).

Fig. 4. Comparison of GOCTA’ images with different spectral bands and skipped convolu-
tion. (a)–(c) GOCTA’ images with different spectral bands obtained by regular convolution.
(d)–(f) GOCTA’ images with different spectral bands obtained by skipped convolution. (g)
Mask of dynamic vascular signals (red) and static signals (blue) in the magnified local region
in (a)–(f) for SNR calculation. (h)–(i) Calculated SNR and CNR plots versus different
spectral bands. The depth-range of 0–170 µm below surface is used for (a)–(f) and (a)–(f)
share the same scale bar.
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The SNR and CNR are calculated by

SNR = 20 · log[(Īsig − Ībkg)
/
σbkg], (5)

and

CNR = (Īsig − Ībkg)

/√
(σ2

sig + σ
2
bkg)

/
2, (6)

where Īsig and Ībkg are the mean value of the vascular intensities and background intensities, σsig
and σbkg are the standard deviation of vascular and background intensities. It can be seen that
only 1.8 dB (SNR) and 1.1 (CNR) degradations were caused by truncating to 1/4 spectral band
and using skipped convolution.

Fig. 5. (a) Mosaic retinal image of a healthy female (23 years old) volunteer’s left eye
obtained by GOCTA’ with 1/4 spectral band and skipped convolution. (b)–(d) Magnified
images of the marked regions by dashed blue rectangles 1–3. (d) The plot of pixel values at
the marked position by a dashed white line in (d). The depth-range of 0–170 µm (with tissue
refractive index of 1.35) below surface is used.
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To test whether such degradations would impact image quality, especially for identification
of small blood vessels, we scanned a mosaic of 12 local regions (each at 3×3 mm2 size) on the
same volunteer’s retinal surface. The result was shown in Fig. 5.

3.3. Comparison of GOCTA’ with SVOCT on both image quality and processing time

To verify the theory of better contrast can be achieved by GOCTA’ compared to SVOCT, fovea
region on the other eye of the same volunteer was scanned and processed for comparison, the
results are shown in Fig. 6. The SVOCT images with full spectral band and 1/4 spectral band were
both calculated and shown for comparison. Three local regions (marked by green rectangles)
were used to calculate SNR and CNR for quantitative comparison. Take Region 1 (magnified) as
an example, a mask for vascular signals and background signals was first obtained by thresholding
the local region. SNR and CNR could then be calculated using Eq. (5) and Eq. (6). The SNRs
for Region 1 - 3 are 10.3, 9.5, 8.3 dB for GOCTA’ with 1/4 spectral band, 9.6, 9.0, 8.0 dB for
SVOCT with full spectral band, and 8.4, 7.6, 6.9 dB for SVOCT with 1/4 spectral band. The
CNRs for Region 1 - 3 are 2.2, 2.1, 2.2 for GOCTA’ with 1/4 spectral band, 2.1, 2.1, 2.1 for
SVOCT with full spectral band, and 1.9, 1.9, 1.8 for SVOCT with 1/4 spectral band. The average
SNR and CNR of the three regions are 9.4, 8.9, 7.6 dB and 2.2, 2.1, 1.9, respectively. We can see
that GOCTA’ with 1/4 spectral band and skipped convolution could provide comparable SNR
and CNR to SVOCT with full spectral band, and higher SNR and CNR than SVOCT with 1/4
spectral band.

We also compared the GOCTA’ imaging with SVOCT for the optic nerve head region, where
both large and small vessels were present (Fig. 7). The GOCTA’ algorithm provided more
uniform signal across both large and small vessels, with the difference image between it and
SVOCT showed more microvasculature in and around the lamina cribrosa.
To quantify the speed advantage of using sub-spectral band and skipped convolution for

GOCTA’ analysis, we measured the data processing time on both CPU and GPU and compared
to data processing time of SVOCT with full spectral band and 1/4 spectral band. For both
algorithms, data processing was performed on the same laptop (CPU: i7-4720HQ, memory: 16
GB, GPU: NVIDIA Geforce GTX970M, operating system: windows 8.1), and CPU processing
time and GPU processing time were measured in MATLAB and CUDA, respectively. The data
processing time on CPU and GPU for each two B-scans was shown in Table 2. Note that surface
calculation was performed on CPU for both scenarios and the time for surface calculation was
obtained through dividing the entire time by the scanning steps in slow scanning direction. To
improve the accuracy of time measurement, the processing times for each step shown in Table 2
were the average processing time of 100 pairs of B-scans.

Table 2. Data processing time of each pair of B-scans for GOCTA’ with 1/4 spectral band and
skipped convolution on CPU and GPU

3D data processing time (ms)
Surface

calculation Data transfer Preparation Subtraction
Skipped

convolution STD RMS Total

CPU 0.11 - - 0.33 1.59 0.10 0.64 2.77

GPU 0.11 0.13 0.14 0.01 0.44 0.01 0.02 0.86

We also measured the processing time for entire 3D dataset on CPU and GPU, respectively,
for comparison and the results are shown in Table 3. By using 1/4 spectral band and skipped
convolution, the GOCTA’ processing speed for 3D dataset can be improved by almost 144
and 30 times than SVOCT with full spectral band and 1/4 spectral band on CPU, respectively.
For SVOCT, the majority of data processing time is for k-space re-sampling [24], which was
performed by spline fitting.
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Fig. 6. Comparison of GOCTA’ image with SVOCT images of fovea. (a) GOCTA’ images
with 1/4 spectral band and skipped convolution. (b)–(c) SVOCT images with full spectral
band and 1/4 spectral band, respectively. (d) Mask of dynamic vascular signals (red) and
static signals (blue) in the magnified local region in (a)–(f) for SNR calculation. (e)–(g)
Histograms of dynamic vascular pixel intensities (red) and background static pixel intensities
(blue). The depth-range of 0–130 µm (with tissue refractive index of 1.35) below surface is
used for (a)–(c) and (a)–(c) share the same scale bar.

Fig. 7. Comparison of GOCTA’ image with SVOCT image of optic nerve head region.
(a) GOCTA’ image with 1/4 spectral band and skipped convolution. (b) SVOCT image
of the same region with full spectral range. (c) Difference image between GOCTA’ and
SVOCT. Green arrow: More microvasculature in lamina cribrosa. White arrow: More
microvasculature in the periphery of lamina cribrosa. The depth-range of 0–170 µm (with
tissue refractive index of 1.35) below surface is used and (a)–(c) share the same scale bar.
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Table 3. 3D (608 × 2048 × 304 pixels) data processing time for SVOCT and GOCTA’ on CPU or GPU

3D data processing time (s)

SVOCT (Full spectral band) SVOCT (1/4 spectral band) GOCTA’

CPU 141.2 29.8 0.98

GPU - - 0.25

4. Discussion and conclusion

In this manuscript, we systematically analyzed the effect of reducing input data volume and
skipped convolution for GOCTA’ processing with an aim to improve the image processing speed
and minimize loss of image quality, using healthy human retinal OCT datasets (608×2048×304
pixels). Overall speed improvement of as high as 29.8 times was achieved over SVOCT with 1/4
spectral band. The speed advantage of GOCTA’ is achieved by two main factors: no k-space
re-sampling and skipped convolution. In this work, the size of Gabor filter kernel in all in vivo
experiments is 16 pixels.
In Table 1, only three different A-scan pixel sizes (2048, 1024, 512) are used to calculate

computational complexity for comparison. To explore the improvement of computational
complexity with different A-scan pixel sizes, we calculated the computational complexity of
from 256 to 32768 pixels and the results are shown in Fig. 8. We can see that the computational
complexity improvement achieved by skipped convolution over FFT increases non-linearly with
the increase of the A-scan pixel number.

Fig. 8. The comparison of computational complexity between skipped convolution and
FFT, (a) multiplication and (b) summation. The operation numbers are calculated based on
different A-scan pixel numbers with Gabor filters of 16 pixels.

The significant processing speed improvement may allow new workflow of ophthalmological
OCT imaging. In particular, real-time GOCTA’ imaging, inherently associated with less motion
artifacts, may be performed as the screening step for identification of suspected patient or retinal
region for more detailed imaging or analysis. Even more interesting is the fact that excellent
quality GOCTA’ images of the retinal microvasculature can be obtained with substantially
narrower OCT system optical bandwidth. The numerical analysis presented here may guide
future OCTA hardware design and help with system cost reduction.

One limitation of GOCTA’ algorithm is that image or feature alignment in the spatial domain
along the A-scan direction is not directly feasible without FFT or other steps with similar
computational complexity, as GOCTA’ is directly performed on spectral fringes to calculate
microvascular images. Therefore, different motion artifact suppression techniques would be
required, such as 2D based algorithms [26,27]. Because the model of GOCTA signal versus
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displacements is an oscillation pattern, the capability of differentiating blood flow velocities by
GOCTA intensity cannot be achieved.
Finally, the speed advantage of GOCTA’ is achieved by avoiding k-space re-sampling and

performing FFT in the depth direction. Therefore, depth resolved structural information is not
inherently available in GOCTA’ processing. Although by choosing appropriate Gabor filter
parameters, different layers of microvasculature of the retina can be distinguished, such operations
require a priori information of the depths of the layers and therefore only appropriate for normal
subjects. Pathological subjects may have layer disruption and therefore, GOCTA’ can potentially
serve as a screening technique to identify images which deviate away from an expected range
of normal subjects. Furthermore, the standard FFT based data processing method can also
be performed on the saved data for more detailed analysis after detecting abnormal vascular
distribution.
In summary, we optimized our proposed Gabor optical coherence tomographic angiography

(GOCTA) algorithm to achieve better image quality, investigated the model of optimized GOCTA’
signals versus moving velocities of scattering particles and further optimized GOCTA’ on data
processing speed in this manuscript. By using 1/4 spectral band and skipped convolution, data
processing speed for 3D dataset is 30 times faster than SVOCT with the same spectral bandwidth.
And compared to our previous work [24], data processing speed is improved of about 26.7 times
and 34 times for 3D dataset on CPU and GPU, respectively. The proposed algorithm can provide
depth dependent microvasculature images in multiple layers using a priori information, and this
algorithm could be especially suitable for SDOCT systems with ultra-high A-scan speed or wide
scanning range, where angiographic processing of large quantity of datasets are required.
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